


Renewable Energy Resources

Renewable Energy Resources is a numerate and quantitative text covering the full range of renew able 
energy technologies and their implementation worldwide. Energy supplies from renewables (such as 
from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal and ocean-thermal) are 
essential components of every nation’s energy strategy, not least because of concerns for the local 
and global environment, for energy security and for sustainability. Thus, in the years between the 
first and this third edition, most renewable energy technologies have grown from fledgling impact to 
significant importance because they make good sense, good policy and good business.

This third edition has been extensively updated in light of these developments, while maintaining the 
book’s emphasis on fundamentals, complemented by analysis of applications. Renewable energy 
helps secure national resources, mitigates pollution and climate change, and provides cost-effective 
services. These benefits are analyzed and illustrated with case studies and worked examples. The 
book recognizes the importance of cost-effectiveness and efficiency of end-use. Each chapter begins 
with fundamental scientific theory, and then considers applications, environmental impact and socio-
economic aspects before concluding with Quick Questions for self-revision, and Set Problems. The 
book includes Reviews of basic theory underlying renewable energy technologies, such as electrical 
power, fluid dynamics, heat transfer and solid-state physics. Common symbols and cross-referencing 
apply throughout; essential data are tabulated in appendices. 

An associated updated eResource provides supplementary material on particular topics, plus a solu-
tions guide to Set Problems for registered instructors only.

Renewable Energy Resources supports multi-disciplinary Master’s degrees in science and engineer-
ing, and specialist modules in first degrees. Practising scientists and engineers who have not had 
a comprehensive training in renewable energy will find it a useful introductory text and a reference 
book.

John Twidell has considerable experience in renewable energy as an academic professor in both 
the UK and abroad, teaching undergraduate and postgraduate courses and supervising research stu-
dents. He has participated in the extraordinary growth of renewable energy as a research contract or, 
journal editor, board member of wind and solar professional associations, and company director. 
University positions have been in Scotland, England, Sudan and Fiji. The family home operates with 
solar heat and electricity, biomass heat and an all-electric car; the aim is to practice what is preached.

Tony Weir has worked on energy and environment issues in the Pacific Islands and Australia for over 
30 years. He has researched and taught on renewable energy and on climate change at the University 
of the South Pacific and elsewhere, and was a Lead Author for the 2011 IPCC Special Report on 
Renewable Energy. He has also managed a large international program of renewable energy projects 
and been a policy advisor to the Australian government, specializing in the interface between technol-
ogy and policy.

www.routledge.com/books/details/9780415584388
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“Renewable energy requires an active approach, based on facts and data. Twidell and Weir, drawing on decades 
of experience, demonstrate this, making clear connections between basic theoretical concepts in energy and 
the workings of real systems. It is a delight to see the field having advanced to this level, where a book like 
Renewable Energy Resources can focus on the very real experiences of the energy systems of the coming 
decades.” – Professor Daniel Kammen, Director, Renewable and Appropriate

Energy Laboratory, University of California, Berkeley, USA 

“Solar and wind power are now proven, reliable, ever-cheaper sources of electricity that can play a major role in 
powering the world. Along with other long-established renewables such as hydropower, and complemented by 
improved energy efficiency and appropriate institutional support, they can be key to sustainable development. 
This book can play a vital role in educating the people who are needed to make it happen.” 

– Professor Martin Green, Director, Australian Centre for Advanced Photovoltaics,  
University of New South Wales, Australia

“The solar revolution that’s been talked about for so long is with us here and now. This new edition of Renewable 
Energy Resources, like earlier editions, will undoubtedly make a significant contribution to informing both those 
involved with the technology and those in policy-making. This is critical if the promise of renewable energy is to 
be delivered as expeditiously and cost-effectively as is now needed.” 

– Jonathon Porritt, Founder Director, Forum for the Future 

“I welcome this excellent third edition of Twidell and Weir with its comprehensive yet accessible coverage of 
all forms of renewable energy. The technologies and the physics behind them are explained with just the right 
amount of math, and they include a realistic summary of the economic and societal implications.” 

– Emeritus Professor William Moomaw, Tufts University, USA and Coordinating  
Lead Author, IPCC Special Report on Renewable Energy 

“I highly recommend this book for its thorough introduction to all the important aspects of the topic of Renewable 
Energy Resources. The book is excellent in its completeness and description of the relevant different sources. 
Moreover it is strong in theory and applications. From a scientific and engineering point this book is a must.” 

– Professor Henrik Lund, Aalborg University, Denmark and  
Editor-in-Chief of the international journal Energy

“Over the years, I have used this excellent text for introducing Physics and Engineering students to the science 
and technology of renewable energy systems. The updated edition will be of immense value as sustainable 
energy technologies join the mainstream and there is an increasing need for human capacity at all levels. I look 
forward to the new edition and hope to use it extensively.”

– Dr Atul Raturi, University of the South Pacific, Fiji 

“Our school has used Renewable Energy Resources since 2005, as it was one of the few texts that covered the 
field with a good balance between background theory and practical applications of RE systems. The new updated 
edition looks great and I am looking forward to using it in my classes.” 

– Dr Alistair Sproul, University of New South Wales, Australia

“I have used the extremely valuable second edition of this book for our postgraduate courses on energy conver-
sion technologies. My students and I welcome this new edition, as it has been very well updated and extended 
with study aids, case studies and photos which even further improve its readability as a textbook.” 

– Dr Wilfried van Sark, Utrecht University, Netherlands

Praise for the 2nd edition
“Twidell and Weir are masters of their subject and join the ranks of acomplished authors who have made a pow-
erful contribution to the field. Renewable Energy Resources is a superb reference work.” 

– Paul Gipe, www.wind-works.org

“It’s ideal for student use - authoritative, compact and comprehensive, with plenty of references out to more 
detailed texts ... a very valuable book.”

– Professor Dave Elliott of the Open University, UK, in Renew 162 2006

“What we need to combat climate change is a stream of students and graduates with the knowledge they can 
gain from this book ... suitable not only for engineering students but also for policy-makers and all those con-
cerned with energy and the environment.’

– Corin Millais, CEO Climate Institute
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PREFACE

Why a third edition?

For this third edition of Renewable Energy Resources, we have made 
 significant changes in recognition of the outstanding progress of renew-
ables worldwide. The basic principles remain the same, but feedback from 
earlier editions enables us to explain and analyze these more beneficially. 
Important aspects of new technology have been introduced and, most 
importantly, we have enlarged the analysis of the institutional factors 
enabling most countries to establish and increase renewables capacity.

When we wrote the first edition in the 1980s, modern applications 
of renewable energy were new and largely ignored by central planners. 
Renewables (apart from hydropower) were seen mainly as part of ‘appro-
priate and intermediate technology’, often for small-scale applications and 
rural development. In retrospect this concept was correct, but of limited 
vision. Yes, domestic and village application is a necessity; renewables 
continue to cater for such needs, now with assured experience and 
proven technology. However, since those early days, renewables have 
moved from the periphery of development towards mainstream infra-
structure while incorporating significant improvements in technology. 
‘Small’ is no longer suspect; for instance, ‘microgeneration’ is accepted 
technology throughout the developed and developing world, especially 
as the sum total of many installations reaches national significance. We 
ourselves have transformed our own homes and improved our lifestyles 
by incorporating renewables technology that is widely available; we are 
grateful for these successes. Such development is no longer unusual, 
with the totality of renewable energy substantial. Commercial-scale appli-
cations are common, not only for long-established hydropower but also 
for ‘new renewables’, especially the ‘big three’ of biomass, solar and 
wind. Major utilities incorporate renewables divisions, with larger and 
much replicated plant that can no longer be described as ‘small’ or ‘irrele-
vant’. Such success implies utilizing varied and dispersed resources in 
an environmentally acceptable and cost-effective manner. Today, whole 
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xvi  Preface

nations are developing their energy infrastructure with significant contri-
butions from renewable energy for heat, fuels and electricity. This third 
edition reflects these welcome changes.

The rise of renewables has coincided with the rise to maturity of 
other ‘new’ technologies, including solid-state electronics, composite 
materials, computer-aided design, biotechnology, remotely communi-
cated supervisory control and data acquisition, smart technology, and 
the internet; these have all supported the improvement and acceptance 
of renewable energy systems. For the environment as a whole, pollution 
reduction remains vital with the added concern of climate change. The 
cause: excessive use of fossil fuels. The obvious remedy is to replace 
fossil fuels by renewables and to improve efficiency of energy use. The 
gradual acceptance, at least partially, of this strategy has transformed 
the institutional framework surrounding renewable energy at all levels – 
international, national, regional and local.

Aim and structure of this book

The main aim of our book is unchanged: to explain renewable energy 
resources and technologies from fundamental scientific principles. Also 
largely unchanged is the basic structure of the book, although some 
chapters have been rearranged and renumbered. Chapter 1 introduces 
the features of renewable energy (RE) that distinguish it from other 
energy sources. Chapters 2 to 14 consider in turn the significant renew-
able energy technologies (solar, wind, bioenergy, etc.), the resources 
available and analysis of their basic operation The last three chapters 
consider subjects common to all energy resources: Chapter 15 – the dis-
tribution and storage of energy, Chapter 16 – the efficient use of energy, 
and Chapter 17 – institutional and economic factors. 

As in previous editions, we expect our readers to have a basic under-
standing of science and technology, especially of physical science and 
basic mathematics. It is not necessary to read chapters consecutively, 
because each topic stands alone. However, certain background subjects 
underpin a variety of technologies; therefore, in this edition we have 
analyzed these subjects in a series of ‘Reviews’ near the end of the book 
(electrical power, fluid dynamics, heat transfer, solid state physics, units 
and conversions). Each review is a concise yet necessary explanation of 
standard theory and application needed in the chapters. Appendices A to 
D contain important background data. 

What’s new in the third edition? 

This third edition responds to technological and socioeconomic changes 
occurring as renewables have become mainstream energy supplies. We 
have therefore improved and updated all the chapters. In particular this 
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applies to solar photovoltaics, wind power and bioenergy; each of these 
subjects now has two chapters: one on the resource and the other on 
the technology. Chapter 16 – ‘Using energy efficiently’ – is new, since 
this is a vital subject for all forms of energy supply and presents some 
particular opportunities with renewables. New material has been added 
on the science of the greenhouse effect and projected climate change in 
Chapter 2, being a further reason for institutional and economic apprecia-
tion of renewables (Chapter 17). 

We still work from first principles with unified symbolism throughout; 
we have tried hard to be user friendly by improving presentation and 
explanations. Each technology is introduced with fundamental analysis 
and details of international acceptance. Data on installed capacities and 
institutional acceptance have been updated to the time of publication. For 
updating, we list recommended websites (including that for this book), 
journals and other publications; internet searches are of course invalua-
ble. This third edition has more ‘boxed examples’ and other such devices 
for focused information. We have extended the self-study mater ial by 
grading the end-of-chapter problems, and by including chapter summa-
ries and ‘Quick questions’ for rapid revision. Short answer guidance for 
problems is at the end of the book. 

Detailed solutions to all the end-of-chapter problems (password pro-
tected for instructors only!) are in a new associated website at www.
routledge.com/books/details/9780415584388. The public area of this 
website includes useful supplementary material, including the  complete 
text of three chapters from the second edition: on OTEC, tidal range 
power and photosynthesis, which have some background material 
omitted from this third edition to help keep the length of the printed 
book manageable. 

NOTE TO READERS: ‘BORDERED TEXT’

To help readers we use ruled borders (e.g. as here) for:

Boxes: case studies or additional technical detail.

Worked Examples: numerical analysis usually with algebraic numbered 
equations.

Derivations: blocks of mathematical text, the less mathematically may omit 
them initially.
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Note: full bibliographic references for sources not fully described here 
are given in the Bibliography of the appropriate chapter.
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2.19(c)  Plotted from data from US National Snow and Ice Data Center, 

with author’s own extrapolation.
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under Creative Commons Attribution-Share Alike 3.0 License
6.10  Photo by Le Grand Portage, reproduced under Creative 
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Attribution 2.0 Generic license.
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9.12  Photo by Mariordo, reproduced under Creative Commons 

Attribution-Share Alike 3.0 Unported License.
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11.10(a)  Map from www.oceanor.no/Services/SCWM, adapted 

with permission of Stephen Barstow, Senior Ocean Wave 
Climatologist .
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11.12  After Glendenning (1977).
11.13  Adapted from a sketch by Prof J. Falnes of NTNU.
11.15(a)  Redrawn from http://amsacta.unibo.it/3062/1/overtopping_

devicex.pdf.
11.15(b)  Photo: Wave Dragon Aps, Denmark, used with permission.
11.18  From Wang et al. (2002).
12.1  Adapted from OpenHydro.com and Sorensen (2011).
12.8(a)  Image by courtesy of Siemens Marine Current Turbines, 
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12.8(b)  Image from www.Openhydro.com, used with permission.
12.8(c)  Image by courtesy of Dr Aggides, University of Lancaster.
12.9  After Consul et al. (2013, Fig. 8.).
13.1  US Department of Energy.
13.6(a)  Photo by US Department of Energy.
13.8  After Aalberg (2003).
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15.4  © Robert Rohatensky (2007), reproduced under a Design 
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16.9  US Energy Administration, International Energy Outlook 2011, 
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16.11  Photo by Mario Roberto Duran Ortiz Mariordo, used under 
Creative Commons Attribution Unported 3.0 license.

16.12  Replotted from data in UK Department of Energy and Climate 
Change (2011), Energy Consumption in UK.

17.1  Adapted from IPCC Synthesis Report (2007), fig. SPM-11.
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List of symbols

This list excludes symbols for fundamental and other units, see Appendix 
A2 etc.

Symbol Main use Other use or comment

Capitals
A Area (m2) Acceptor; ideality factor

B Magnetic flux Benefit

C Thermal capacitance (J/K) Electrical capacitance (F); 
constant

CP Power coefficient

Cr Concentration ratio

Cw Capture width (of wave 
device)

CΓ Torque coefficient

D Distance (m) Diameter; damping factor

E Energy (J)

EF Fermi level

Eg Band gap (eV)

EK Kinetic energy (J)

F Force (N) Faraday constant (C/mole); 
Fill factor (photovoltaics)

Fij Shape factor

F’ij Radiation exchange factor 
(i to j)

G Solar irradiance (Wm−2) Gravitational constant (Nm2kg−2);
Temperature gradient (K/m);
Gibbs energy (J)

Gb, Gd, Gh* Solar irradiance (beam, 
diffuse, on horizontal)

G0* Solar constant
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xxiv  List of symbols

Symbol Main use Other use or comment

H Enthalpy (J) Head (pressure height) of fluid 
(m); wave crest height (m); 
insolation (J m−2 day−1); heat of 
reaction (ΔH: J per component 
mass or volume)

I Electric current (A) Moment of inertia (kg m2);
wind turbulence intensity (m s−1)

J Current density (A/m2)

K Extinction coefficient (m−1) Clearness index (KT); constant

L Distance, length (m) Diffusion length (m)

M Mass (m) Molecular weight

N Concentration (m−3) Hours of daylight

N0 Avogadro number

P Power (W)

P’ Power per unit length (W/m)

Q Volume flow rate (m3/s)

R Thermal resistance (K/W) Radius (m); electrical resistance 
(Ω); reduction level; tidal range 
(m); gas constant (R0); blade 
length (m)

Rm Thermal resistance (mass 
transfer; K/W) 

Rn Thermal resistance 
(conduction; K/W) 

Rr Thermal resistance (radiation; 
K/W)

Rv Thermal resistance 
(convection; K/W) 

RFD Radiant flux density (W/m2)

S Surface area (m2) Entropy (J/K)

Sv Surface recombination 
velocity (m/s)

T Temperature (K) Period (s−1)

U Potential energy (J) Heat loss coefficient (Wm−2K−1)

V Volume (m3) Electrical potential (V)

W Width (m) Energy density (J/m3)

X Characteristic dimension (m) Concentration ratio

Z Capacity factor 
(dimensionless)
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List of symbols  xxv

Symbol Main use Other use or comment

Script capitals  (non-dimensional numbers characterizing fluid flow; all 
dimensionless) 

A Rayleigh number
G Grashof number Graetz number
N Nusselt number
P Prandtl number
R Reynolds number
S Shape number (of turbine)

Lower case
a amplitude (m) wind interference factor; 

radius (m)

b wind profile exponent width (m)

c specific heat capacity (J kg−1 
K−1)

speed of light (m/s); phase 
velocity of wave (m/s); chord 
length (m); Weibull speed factor 
(m/s)

d distance (m) diameter (m); depth (m); zero 
plane displacement (wind) (m)

e elementary charge (C) base of natural logarithms 
(2.718); ellipticity; external

f frequency of cycles (Hz = s−1) pipe friction coefficient; fraction; 
force per unit length (N m−1)

g acceleration due to gravity 
(m/s2)

h heat transfer coefficient 
(Wm−2K−1)

vertical displacement (m); Planck 
constant (Js)

i √−1 internal

k thermal conductivity 
(Wm−1K−1)

wave vector (=2π/λ); Boltzmann 
constant (=1.38 × 10−23 J/K)

l distance (m)

m mass (kg) air mass ratio 

n number number of nozzles, of hours of 
bright sunshine, of wind turbine 
blades; electron concentration 
(m−3)

p pressure (Nm−2 = Pa) hole concentration (m−3)

q power per unit area (W/m2)

r thermal resistivity of unit area 
(often called ‘r-value’; r = RA) 
(m2K/W)

radius (m); distance (m)

s angle of slope (degrees)

t time (s) thickness (m)
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xxvi  List of symbols

Symbol Main use Other use or comment

u velocity along stream (m/s) group velocity (m/s)

v velocity (not along stream) 
(m/s)

w distance (m) moisture content (dry basis%); 
moisture content (wet basis%) 
(w’)

x coordinate (along stream) (m)

y coordinate (across stream) 
(m)

z coordinate (vertical) (m)

Greek capitals
Γ Gamma Torque (Nm) Gamma function

Δ Delta Increment of […] (other 
symbol)

Λ Lambda Latent heat (J/kg)

Σ Epsilon Summation sign

Φ Phi Radiant flux (W) Probability function, magnetic 
flux

Φu Probability distribution of 
wind speed ((m.s−1))−1

Ω Omega Angular velocity of blade 
(rad/s)

Phonon frequency (s−1); 

Greek (lower case)
α alpha absorptance (dimensionless) angle of attack (deg)

αλ monochromatic absorptance 
(dimensionless)

β beta angle (deg) volumetric expansion coefficient 
(K−1)

γ gamma angle (deg) blade setting angle (deg)

δ delta boundary layer thickness (m) angle of declination (deg)

ε epsilon emittance (dimensionless) wave ‘spectral width’; 
permittivity; dielectric constant

ελ monochromatic emittance

η eta efficiency (dimensionless)

θ theta angle of incidence (deg) temperature difference (oC)

κ kappa thermal diffusivity (m2/s)

λ lambda wavelength (m) tip speed ratio of wind turbine 

μ mu dynamic viscosity (N m−2s)
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List of symbols  xxvii

Symbol Main use Other use or comment

ν nu kinematic viscosity (m2/s) 

ξ xi electrode potential (V) roughness height (m)

π pi 3.1416

ρ rho density (kg/m3) reflectance (albedo); electrical 
resistivity (m)

ρλ monochromatic reflectance 
(dimensionless)

σ sigma Stefan-Boltzmann constant

τ tau transmittance (dimensionless) relaxation time (s); duration (s); 
shear stress (N/m2)

τλ monochromatic transmittance 
(dimensionless)

f phi radiant flux density (RFD) 
(W/m2)

wind blade angle (deg); potential 
difference (V); latitude (deg); 
phase angle

fλ spectral distribution of RFD 
(W/m3)

χ chi absolute humidity (kg/m3)

ψ psi longitude (deg) angle (deg)

ω omega angular frequency (=2πf) 
(rad/s)

hour angle (deg); solid angle 
(steradian)

Subscripts
B Black body Band

D Drag Dark; device

E Earth

F Force

G Generator

L Lift Light

M Moon

P Power

R Rated

S Sun

T Tangential Turbine

a ambient aperture; available (head); 
aquifer; area

abs absorbed

b beam blade; bottom; base; biogas

c collector cold

ci cut-in
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xxviii  List of symbols

Symbol Main use Other use or comment

co cut-out

cov cover

d diffuse dopant; digester

e electrical equilibrium; energy

f fluid forced; friction; flow; flux

g glass generation current; band gap 

h horizontal hot

i integer intrinsic

in incident (incoming)

int internal

j integer

m mass transfer mean (average); methane

max maximum

maxp maximum power

n conduction 

net heat flow across surface

o (read as numeral zero)

oc open circuit

p plate peak; positive charge carriers 
(holes); performance

r radiation relative; recombination; room; 
resonant; rock; relative

rad radiated

refl reflected

rms root mean square

s surface significant; saturated; Sun; sky

sc short circuit

t tip total

th thermal

trans transmitted

u useful

v convection vapor

w wind water; width

z zenith

λ monochromatic (e.g. αλ)

0 distant approach ambient; extra-terrestrial; dry 
matter; saturated; ground-level

1 entry to device first

2 exit from device second
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List of symbols  xxix

Symbol Main use Other use or comment

3 output third

Superscript
m or max maximum

* measured perpendicular to 
direction of propagation (e.g. 
Gb*)

· (dot) rate of , e.g.  ṁ

Other symbols and abbreviations
Bold face vector, e.g. F

ch. chapter

§ section (within chapters)

= mathematical equality

≈ approximate equality (within 
about 20%)

~ equality in order of magnitude 
(within a factor of 2 to 10)

≡ mathematical identity (or 
definition), equivalent
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List of abbreviations (acronyms) 

This list excludes most chemical symbols and abbreviations of standard 
units; see also the Index, and Appendix A for units.

 AC Alternating current 
 AM Air–mass ratio
 BoS Balance of system
 CCS Carbon capture and storage
 CFL Compact fluorescent light
 CHP Combined heat and power 
 CO2 Carbon dioxide
 CO2eq CO2 equivalent for other climate-change-forcing gases
 COP Coefficient of Performance
 CSP Concentrated solar power (= CSTP)
 CSTP Concentrated solar thermal power
 DC Direct current
 DCF Discounted cash flow
 DNI Direct normal insolation (= irradiance)
 DOWA Deep ocean water applications
 EC Electrochemical capacitor
 EGS Enhanced geothermal system[s]
 EIA Environmental Impact Assessment
 EMF Electromotive force (equivalent to Voltage)
 EU European Union 
 EV Electric vehicle
 FF Fossil fuel
 GCV Gross calorific value
 GDP Gross domestic product
 GER Gross energy requirement
 GHG Greenhouse gas
 GHP Geothermal heat pump (= GSHP)
 GMST Global mean surface temperature
 GOES Geostationary Operational Environmental Satellite
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List of abbreviations  xxxi

 GPP Gross primary production
 GSHP Ground-source heat pump
 GWP Global warming potential
 HANPP Human appropriated net primary productivity
 HAWT Horizontal axis wind turbine
 IEA International Energy Agency
 IPCC Intergovernmental Panel on Climate Change
 LCA Life cycle analysis
 LCV Lower calorific value
 LED  Light emitting diode
 LH Light harvesting
 LiDAR Light detection and ranging
 MPPT Maximum power tracker
 MSW Municipal solid waste
 NB Nota bene (= note well)
 NPP Net primary production 
 NPV Net present value
 O&M Operation and maintenance
 OECD Organisation for Economic Cooperation and Development 
 ONEL Oakridge National Laboratory
 OPEC Organisation of Petroleum Exporting Countries
 OPV Organic photovoltaic
 OTEC Ocean thermal energy conversion 
 OWC Oscillating water column
 PS Photosystem
 PV Photovoltaic
 P2G Power to grid
 R&D Research and development
 R, D & D Research, development and demonstration
 RE Renewable energy
 RES Renewable energy system
 RET Renewable energy technology
 RFD Radiant flux density (W/m2)
 SCADA Supervisory control and data aquisition
 SHS Solar home system
 SONAR Sonic detection and ranging 
 SRREN Special Report on Renewable Energy (published by IPCC)
 STP  Standard temperature and pressure
 TPES Total primary energy supply 
 UK United Kingdom
 US[A] United States [of America]
 WMO World Meteorological Organisation
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CHAPTER

1

LEARNING AIMS

• Define renewable energy (RE).
• Appreciate the scientific, technical, and social 

implications of the difference between renew-
able and non-renewable energy resources.

• Consider sustainability and energy supply.

• Know the key parameters affecting individual 
RE supplies.

• Appreciate the variability of different RE 
supplies.
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2  Principles of renewable energy

• Consider methods and controls to optimize 
the use of renewable energy.

• Relate energy supplies to environmental 
impact.

LIST OF FIGURES
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§1.1 INTRODUCTION

This textbook analyzes the full range of renewable energy supplies 
available to modern economies worldwide. It is widely recognized that 
these are necessary for sustainability, security, and standard of living. 
The renewable energy systems covered include power from solar radia-
tion (sunshine), wind, biomass (plant crops), rivers (hydropower), ocean 
waves, tides, geothermal heat, and other such continuing resources. All 
of these systems are included within the following general definition:

Renewable energy is energy obtained from naturally repetitive and 
persistent flows of energy occurring in the local environment.

An obvious example is solar (sunshine) energy that ‘persists’ and ‘repeats’ 
day after day, but is obviously not constant but variable. Similarly, plants 
have an annual growing season, which stores energy from sunshine in 
their structure that is released in combustion and metabolism. With a 
renewable energy resource, the energy is already passing through the 
environment as a current or flow, irrespective of there being a device to 
intercept and harness this power. The phrase ‘local environment’ refers 
to the location of such a device to intercept the flow. The natural energy 
flows that are commonly harnessed for energy purposes are indicated in 
§1.3. Such energy may also be referred to as green energy or sustainable 
energy.

In contrast,

Non-renewable energy is energy obtained from static stores 
of energy that remain underground unless released by human 
interaction.

Examples are nuclear fuels and the fossil fuels of coal, oil, and natural 
gas. With these sources, the energy is initially an isolated energy poten-
tial, and external action is required to initiate the supply of energy for 
practical purposes. To avoid using the ungainly word ‘non-renewable’, 
such energy supplies are called finite supplies or brown energy.

It is also possible to include energy from society’s wastes in the defi-
nition of renewables, since in practice they are unstoppable; but are 
they ‘natural’? Such finer points of discussion concerning resources are 
implicit in the detail of later chapters.

For renewable energy the scale of practical application ranges from 
tens to many millions of watts, and the totality is a global resource. 
However, for each application, five questions should be asked:

1 How much energy is available in the immediate environment; what 
are the resources?

2 What technologies can harness these resources?
3 How can the energy be used efficiently; what is the end-use?
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4 What is the environmental impact of the technology, including its 
implications for climate change?

5 What is the cost-effectiveness of the energy supply as compared with 
other supplies?

The first three are technical questions considered in the central chap-
ters of this book by type of renewables technology. The fourth ques-
tion relates to broad issues of planning, social responsibility, sustainable 
development, and global impact; these are considered in the concluding 
section of each technology chapter and in Chapter 17. The fifth and final 
question is a dominant question for consumers, but is greatly influenced 
by government and other policies, considered as ‘institutional factors’ in 
Chapter 17. The evaluation of ‘cost-effectiveness’ depends significantly 
upon the following factors:

a Appreciating the distinctive scientific principles of renewable energy 
(§1.4).

b the efficiency of each stage of the energy supply in terms of both min-
imizing losses and maximizing economic and social benefits (§16.2).

c Considering externalities and social costs (Box 17.2).
d Considering both costs and benefits over the lifetime of a project 

(which may be > ~30 years).

In this book we analyze (a) and (b) in detail, since they apply universally. 
The second two, (c) and (d) have aspects that depend on particular econ-
omies, and so we only explain the principles involved.

§1.2  ENERGY AND SUSTAINABLE DEVELOPMENT

§1.2.1 Principles and major issues

Sustainable development may be broadly defined as living, producing, 
and consuming in a manner that meets the needs of the present without 
compromising the ability of future generations to meet their own needs. 
It has become one of the key guiding principles for policy in the 21st 
century. The principle is affirmed worldwide by politicians, industrialists, 
environmentalists, economists, and theologians as they seek interna-
tional, national, and local cooperation. However, reaching specific agreed 
policies and actions is proving much harder!

In the international context, the word ‘development’ refers to improve-
ment in quality of life, including improving standards of living in less 
developed countries. The aim of sustainable development is to achieve 
this aim while safeguarding the ecological processes upon which life 
depends. Locally, progressive businesses seek a positive triple bottom 
line (i.e. a positive contribution to the economic, social, and environmen-
tal well-being of the community in which they operate).
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The concept of sustainable development first reached global import-
ance in the seminal report of the UN World Commission on Environment 
and Development (1987); since then this theme has percolated slowly 
and erratically into most national economies. The need is to recognize 
the scale and unevenness of economic development and population 
growth, which place unprecedented pressures on our planet’s lands, 
waters, and other natural resources. Some of these pressures are severe 
enough to threaten the very survival of some regional populations and 
in the longer term to lead to disruptive global change. The way people 
live, especially regarding production and consumption, will have to adapt 
due to ecological and economic pressures. Nevertheless, the economic 
and social pain of such changes can be eased by foresight, planning, and 
political and community will.

Energy resources exemplify these issues. Reliable energy supply is 
essential in all economies for lighting, heating, communications, comput-
ers, industrial equipment, transport, etc. Purchases of energy account for 
5 to10% of gross national product in developed economies. However, in 
some developing countries, fossil fuel imports (i.e. coal, oil, and gas) may 
cost over half the value of total exports; such economies are unsustain-
able, and an economic challenge for sustainable development. World 
energy use increased more than ten-fold during the 20th century, pre-
dominantly from fossil fuels and with the addition of electricity from 
nuclear power. In the 21st century, further increases in world energy 
consumption may be expected, largely due to rising industrialization and 
demand in previously less developed countries, aggravated by gross inef-
ficiencies in all countries. Whatever the energy source, there is an over-
riding need for efficient transformation, distribution, and use of energy.

Fossil fuels are not being newly formed at any significant rate, and 
thus current stocks are ultimately finite. The location and amount of such 
stocks depend on the latest surveys. Clearly the dominant fossil fuel by 
mass is coal. The reserve lifetime of a resource may be defined as the 
known accessible amount divided by the rate of present use. By this defi-
nition, the lifetime of oil and gas resources is usually only a few decades, 
whereas the lifetime for coal is a few centuries. Economics predicts that 
as the lifetime of a fuel reserve shortens, so the fuel price increases; 
subsequently, therefore, demand falls and previously more expensive 
sources and alternatives enter the market. This process tends to make 
the original source last longer than an immediate calculation indicates. 
In practice, many other factors are involved, especially government 
policy and international relations. Nevertheless, the basic geological fact 
remains: fossil fuel reserves are limited and so the current patterns of 
energy consumption and growth are not sustainable in the longer term.

Moreover, the emissions from fossil fuel use (and indeed nuclear 
power) increasingly determine another fundamental limitation on 
their continued use. These emissions bring substances derived from  
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underground materials (e.g. carbon dioxide) into the Earth’s atmosphere 
and oceans that were not present before. In particular, emissions of 
carbon dioxide (CO2) from the combustion of fossil fuels have significantly 
raised the concentration of CO2 in the global atmosphere. Authoritative 
scientific opinion is in agreement that if this continues, the greenhouse 
effect will be enhanced and so lead to significant climate change within 
a century or sooner, which could have a major adverse impact upon food 
production, water supply, and society (e.g. through increased floods and 
storms (IPCC 2007, 2013/2014)); see also §2.9. Sadly, concrete action 
is slow, not least owing to the  reluctance of  governments in industrial-
ized countries to disturb the lifestyle of their voters. However, potential 
climate change, and related sustainability issues, is now established as 
one of the major drivers of energy policy.

In contrast to fossil and nuclear fuels, renewable energy (RE) supply in 
operation does not add to elements in the atmosphere and hydrosphere. 
In particular, there is no additional input of greenhouse gases (GHGs). 
Although there are normally such emissions from the manufacture of all 
types of energy equipment, these are always considerably less per unit 
of energy generated than emitted over the lifetime of fossil fuel plant 
(see data in Appendix D). Therefore, both nuclear power and renewables 
significantly reduce GHG emissions if replacing fossil fuels. Moreover, 
since RE supplies are obtained from ongoing flows of energy in the 
natural environment, all renewable energy sources should be sustain-
able. Nevertheless, great care is needed to consider actual situations, as 
noted in the following quotation:

For a renewable energy resource to be sustainable, it must be 
inexhaustible and not damage the delivery of environmental 
goods and services including the climate system. For example, 
to be sustainable, biofuel production should not increase net 
CO2 emissions, should not adversely affect food security, nor 
require excessive use of water and chemicals, nor threaten 
biodiversity. To be sustainable, energy must also be economically 
affordable over the long term; it must meet societal needs and 
be compatible with social norms now and in the future. Indeed, 
as use of RE technologies accelerates, a balance will have to be 
struck among the several dimensions of sustainable development. 
It is important to assess the entire lifecycle of each energy source 
to ensure that all of the dimensions of sustainability are met.
 (IPCC 2011, §1.1.5)

In analyzing harm and benefit, the full external costs of obtaining mate-
rials and fuels, and of paying for damage from emissions, should be inter-
nalized in costs, as discussed in Chapter 17. Doing so takes into account: 
(i) the finite nature of fossil and nuclear fuel materials; (ii) the harm of 
emissions; and (iii) ecological  sustainability. Such fundamental analyses 
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usually  conclude that combining renewable energy with the efficient 
use of energy is more cost-effective than the traditional use of fossil 
and nuclear fuels, which are unsustainable in the longer term. In short, 
 renewable energy supplies are much more compatible with sustainable 
development than are fossil and nuclear fuels in regard to both resource 
limitations and environmental impacts (see Table 1.1).

Consequently, almost all national energy plans include four vital factors 
for improving or maintaining benefit from energy:

1 increased harnessing of renewable supplies;
2 increased efficiency of supply and end-use;
3 reduction in pollution;
4 consideration of employment, security, and lifestyle.

§1.2.2 Energy security

Nations, and indeed individuals, need secure energy supplies; they need 
to know that sufficient and appropriate energy will reach them in the 
future. Being in control of independent and assured supplies is therefore 
important – renewables offer this so long as the technologies function 
and are affordable.

§1.2.3 A simple numerical model for sustainability

Consider the following simple model describing the need for commercial 
and non-commercial energy resources:

R = E N (1.1)

Here R is the total yearly energy consumption for a population of N people. 
E is the per capita use of energy averaged over one year, related closely 
to the provision of food and manufactured goods. On a world scale, the 
dominant supply of energy is from commercial sources, especially fossil 
fuels; however, significant use of non-commercial energy may occur (e.g. 
fuel-wood, passive solar heating) which is often absent from most offi-
cial and company statistics. In terms of total commercial energy use, E 
on a world per capita level is about 2.1 kW, but regional average values 
range widely, with North America 9.3 kW, Europe 4.6 kW, and several 
regions of Central Africa 0.2 kW. The inclusion of non-commercial energy 
increases all these figures, especially in countries with low values of E.

Standard of living relates in a complex and an ill-defined way to E. 
Thus, per capita gross national product S (a crude measure of standard 
of living) may be related to E by:

S = f E (1.2)

Here f is a complex and nonlinear coefficient that is itself a function of 
many factors. It may be considered an efficiency for transforming energy 
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into wealth and, by traditional economics, is expected to be as large as 
possible. However, S does not increase uniformly as E increases. Indeed, 
S may even decrease for large E (e.g. due to pollution or technical ineffi-
ciency). Obviously, unnecessary waste of energy leads to smaller values 
of f than would otherwise be possible. Substituting for E in (1.1), the 
national requirement for energy becomes:

R = (S N) / f (1.3)

so

DR/R = DS / S + DN / N - Df / f  (1.4)

Now consider substituting global values for the parameters in (1.4). 
In 50 years the world population N increased from 2.5 billion in 1950 to 
over 7.2 billion in 2013. It is now increasing at approximately 2 to 3% per 
year so as to double every 20 to 30 years. Tragically high infant mortality 
and low life expectancy tend to hide the intrinsic pressures of population 
growth in many countries. Conventional economists seek exponential 
growth of S at 2 to 5% per year. Thus, in (1.4), at constant efficiency 
parameter f, the growth of total world energy supply is effectively the 
sum of population and economic growth (i.e. 4 to 8% per year). Without 
new supplies, such growth cannot be maintained. Yet, at the same time 
as more energy is required, fossil and nuclear fuels are being depleted, 
and debilitating pollution and climate change increase.

An obvious way to overcome such constraints is to increase renew-
able energy supplies. Most importantly, from (1.3) and (1.4), it is vital to 
increase the efficiency parameter f (i.e. to have a positive value of Df). 
Consequently, if there is a growth rate in the efficient use and generation 
of energy, then S (standard of living) increases while R (resource use) 
decreases.

§1.2.4 Global resources

With the most energy-efficient modern equipment, buildings, and trans-
portation, a justifiable target for energy use in a modern society is E = 2 
kW per person (i.e. approximately the current global average usage, yet 
with a far higher standard of living). Is this possible, even in principle, from 
renewable energy? Each square metre of the Earth’s habitable surface is 
crossed by or accessible to an average energy flux of about 500 W (see 
Problem 1.1). This includes solar, wind, or other renewable energy forms 
in an overall estimate. If this flux is harnessed at just 4% efficiency, 2 kW 
of power can be drawn from an area of 10m × 10m, assuming suitable 
methods. Suburban areas of residential towns have population densities 
of about 500 people km–2. At 2 kW per person, the total energy demand 
of l000 kW/km2 could be obtained in this way by using just 5% of the 
local land area for energy production, thus allowing for the ‘technical 
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potential’ of RE being less than the ‘theoretical potential’, as indicated 
in Fig.1.2 and §1.5.4. Thus, renewable energy supplies may, in principle, 
provide a satisfactory standard of living worldwide, but only if methods 
exist to extract, use, and store the energy satisfactorily at realistic costs. 
This book will consider both the technical background of a great variety 
of possible methods and a summary of the institutional factors involved.

§1.3 FUNDAMENTALS

§1.3.1 Energy sources

The definitions of renewable energy and of fossil and nuclear energy 
given at the start of this chapter are portrayed in Fig. 1.1. Table 1.1 pro-
vides a comparison of renewable and conventional energy systems.

There are five ultimate primary sources of useful energy:

1 The Sun.
2 The motion and gravitational potential of the Sun, Moon, and Earth.
3 Geothermal energy from cooling, chemical reactions, and natural radio-

active decay.
4 Nuclear reactions on the Earth.
5 Chemical reactions from mineral sources.

Renewable energy derives continuously from sources 1, 2, and 3. Note 
that biomass and ocean heat are ultimately derived from solar energy, as 
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Fig. 1.1
Contrast between renewable (green) and finite (brown) energy supplies. Environmental 
energy flow ABC, harnessed energy flow DEF.
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